
E B O O K

G U I D E P O I N T A P P L I C A T I O N S E C U R I T Y A S A S E R V I C E

Secure Coding
 Culture Playbook

1

The Culture Gap Between Development & Security

There remains a cultural gap between
software developers and application security
practitioners. This gap challenges application
security maturation within the Software
Development Lifecycle (SDLC).

On one side of the gap, developers want to
leverage the best-of-breed in familiar tools to
ease their lives and work. “In 2021, the tools
used for application security that integrate into
the toolchain must work much more rapidly,
scale to cloud environments, and present
actionable findings in a format that developers
can understand and use to make quick fixes.” 1
Developers must write code quickly to meet
the needs of the business. These needs include
shrinking Time-to-Market to earn a larger share
of the marketplace ahead of competitors.

On the other side of the gap, Application
Security strives to protect data as it moves
through software in mobile devices, web
applications, endpoints, and other aspects of
software. Security must contend with existing
and emerging privacy laws that require the
business to geolocate data. Security needs
to ensure that the code is free of significant
vulnerabilities that could subject the user, the
application, or the data to harm if an attacker
leverages it. The goal is to eliminate security
issues from the code proactively at the start of
the development process rather than reactively
after developers have written the code or at the
end of the lifecycle.

But companies admit that they fall short of
these goals. “Forty-eight percent of organizations
push vulnerable code into production. Forty-five
percent say it’s because the vulnerabilities were
discovered too late in the cycle to resolve them
in time.” 2 It’s not enough to test and fix code
at the end of the development pipeline. Too
many security flaws survive the process and
make their way into production. Application
security must dive deep into the heart of the
development process when developers first
stroke their keyboards.

But developers see application security as a
roadblock to timely software delivery. They
don’t feel they have the skillset or the person-
hours to touch application security. They want
the security organization to address it without
adversely affecting their work.

“Developers focus on making things work and
delivering releases on schedule, often under
management pressure to get new features
out of the door as soon as possible. The job of
testers and security personnel, on the other
hand, is to find bugs, vulnerabilities, and other
issues–in other words, to prove that things don’t
work after all. To reconcile both approaches,
organizations must incorporate security into the
development culture and make it an integrated
part of the application lifecycle rather than a
separate phase.” 3

A culture shift is underway to unite developers
and security. The new culture maps a common
destination for both groups to inject security
into applications painlessly. Secure coding is
that destination.

2

Uniting Security and Development
Through a Cultural Evolution

The AppSec Culture

Thirty-percent of respondents said that ensuring that business-critical applications arrive without
vulnerabilities was the top challenge.4 Secure coding circumvents those vulnerabilities. But security
needs to coax developers along in a way that makes writing secure code palatable for them. Security
needs to expose developers to the philosophy of secure coding and its many benefits.

By taking baby steps, developers can soon write
secure code from the start. Companies face some
common challenges on the way to building a
mature AppSec program. There are effective ways
to meet these challenges in our AppSec playbook.

THE CHALLENGE—Establishing that application
security is everyone’s business.

THE PLAY—Reach out to all stakeholders

Security should initiate conversations with
stakeholders, such as the QA specialists and
architects, who touch the development lifecycle.
Security needs to assess the development teams,
their numbers, and their methodologies. With
these conversations, security and development
can work toward an AppSec recipe for siloed
subgroups and the organization as a whole.

“More companies are concerned with the security
of their applications than they were a year ago,
survey results show. More than one-quarter
(28-percent) say their level of concern has
increased dramatically, while 20-percent say it
has increased slightly.”6 The increasing buy-in
from technology influencers and decision-makers
eases the message that application security
concerns the entire organization.

Coding errors cause up to 90%
of software security issues,
which is why secure coding
standards are essential .5

SAMM—the OWASP Software
Assurance Maturity Model—is an
industry-accepted framework
with actionable ingredients for
creating an optimal AppSec
program recipe. SAMM evolved
into version 2.0 towards the end
of 2019 and into early 2020,
offering more content about how
developers deliver software so
that they can code securely.

Once everyone is on board for cultural
change, they can all do their part. For
example, project managers can build more
time into projects so that developers can
code more securely.

3

THE CHALLENGE—Developers are focused
on differing software, old and new, and
differing methodologies.

While some developers support legacy
software with more traditional architecture
stacks, others work with new architectures
including, but not limited to applications built
on APIs and cloud-based applications where
the clear lines of delineation between the
application and infrastructure as code are
becoming harder to determine. Each team
may use DevOps, Agile, Waterfall, or hybrid
development methodologies suited to the
given project. The AppSec program must
work for the various ways disparate groups
within an organization perform the day-to-day
business of software development.

And AppSec must protect all the software.
That doesn’t just mean securing the
applications that the company considers
to be mission- or business-critical. A
holistic security strategy involves the entire
application “portfolio.” Leveraging solutions
that address all applications–whether
outsourced or built in-house or via open-
source components–and the entire software
development lifecycle (SDLC) is key to
up-leveling your security posture.” 7

THE PLAY—Know the developers and their
projects and approaches.

Understand the developers’ daily grind across
projects and methodologies. Determine the
first steps to introduce secure coding to each
siloed team. AppSec enables security to
apply the best SAMM ingredients in a recipe
specific to their organization so that they
can acclimate developers step-by-step. An
AppSec recipe enables the enterprise to inject
AppSec into the existing SDLC. Security can’t
drop policy or process requirements on SDLCs
without knowing how developers function.

SAMM ingredients also enable the
application security team to gauge developer
software security practices and orchestrate
an increasingly balanced AppSec program
over time. SAMM ingredients lead to mature
AppSec programs and activities that the
organization can measure.

For example, SAMM has an ingredient for
creating useful implementation review
checklists for secure coding best practices
based on the implementation language,
platform, and typical technology stack.8

OPEN-SOURCE
SOFTWARE SECURITY
VULNERABILITIES
DOUBLED IN 2019. 9

4

THE CHALLENGE—Developers chase increasing
vulnerabilities through reactive testing, repeatedly
fixing the same bugs in an endless cycle.

Developers feel like they’re running in a hamster wheel-
-coding, testing, and yet seeing the same vulnerabilities
return[MOU1] even as new vulnerabilities appear. The
circular process is expensive and exhausting, and the
technical debt grows as testing continues.

THE PLAY—Introduce subtle growth in secure coding
practices by seamlessly nurturing new programming
habits close to how developers already write their code.

“Complex procedures can lead to inconsistent results or worse, and developers may ignore them
completely. You should avoid reinventing the wheel and stick to proven security and secure coding
best practices. The OWASP Foundation offers many valuable resources, including the OWASP Top 10,
which features the most common security risks and is thus a good starting point.” 11

Companies can monitor how well developers are assimilating secure coding best practices. SAMM
has an ingredient for gauging developer progress in secure coding. Implementation Review 2 uses
“routine analysis results to compile historical data on per-team secure coding habits.” 12

THE CHALLENGE—Application security adds time and money to every project. But development
needs to accelerate as users demand new feature releases with increasing regularity.

THE PLAY—Bring secure coding into developers’ existing processes and workflow to keep
projects moving along.

“It only takes a second to introduce a vulnerability but often
many days to find and fix it. Without the right tools and
streamlined workflows, many organizations are struggling
with a backlog of issues that keeps growing.” 10

4

5

“We know that it is easier to find and fix issues in applications that have
less coding baggage — small application size, using modern languages
and frameworks. But even with the “baggage,” development teams
that use secure coding practices, such as frequently scanning for flaws,
integrating and automating security checks, and taking a broader look at
the application’s health, are more likely to have better success with their
secure software development efforts.” 13

“The effectiveness of complex workflows related to development, testing, and operations now
has a direct bearing on the business.”14 Fixing loads of bugs at the end of the development
pipeline costs developers even more time, slows Time-to-Market, and costs the business
money and competitive advantage. Secure coding is much less expensive and faster overall.

THE CHALLENGE—Not all tools and processes that developers choose make their lives
more comfortable in the long run.

Development leadership is driving decisions on developer tools in a changing world where
security is an increasing concern. Developers are excited at the prospect of increasingly
automating their work.

THE PLAY—Security can help developers
choose the best tools for ease of
development and secure coding.

Optimal tools support secure coding
while remaining intuitive and familiar.

“Organizations must adopt developer-
centric tools that keep developers within
their preferred environments to make it
easier for them to embed security into their
processes.”15

Though this is good news for developers,
there are caveats. While new automated
testing and development tools can help,
security needs to apply governance to automation to ensure security milestones in the
development pipeline. Security also needs to implement tools properly. For example, suppose
development implements a static analysis development tool too quickly. In that case, it
presents many false positives, and developers get much noise that they can’t use.

“Shoutout to Python, which still
has a relatively low percentage
of vulnerabilities, even though its
popularity, especially in the open-
source community, continues to rise.
Hopefully, this is a result of secure
coding practices and not lax security
research for python projects.” 16

6

Three Tools to Ease
Secure Coding

1.

2.

3.

Create an application
risk register

Use a third-party
dependency review process

Apply governance rules so
developers can keep working

Use an application risk register to identify and prioritize
applications the company should care about[MOU2], so
everyone can apply their time optimally. An application
risk register demands a risk score for every application
so that security can determine the appropriate frequency
and depth of testing for each application based on the
level of risk. [MOU3] Prioritizing applications saves time
for developers, too. They won’t have to meet an excess of
requirements for less critical applications.

“Seventy-percent of applications transfer at
least one flaw from their open-source libraries. Thirty-
percent of applications has more flaws in their open-
source libraries than in-house code has.”18 A third-party
dependency review process is essential. Suppose the
code uses many third-party libraries with component
dependencies that are not under the organization’s control.
In that case, security and development have to ensure
they don’t make secure source code vulnerable.

By working with developers on timelines for fixing
vulnerabilities with certain severity-levels, security can
ensure those deadlines are reasonable, so everyone is
on board with them. SAMM has an exception process to
ensure the governance of bug fix timelines even when
there are factors beyond the organization’s reach.

Say, for example, that an SLA requires development to
address high severity findings within 30 days. Yet, there
is a finding in a third-party component with no patch
available. Governance can provide an exception process to
analyze the risk and allow the developer to continue their
work. The exception tracks the issue until there is a patch.

By working with developers on timelines
for fixing vulnerabilities with certain
severity-levels, security can ensure
those deadlines are reasonable, so
everyone is on board with them. SAMM
has an exception process to ensure the
governance of bug fix timelines even
when there are factors beyond the
organization’s reach.

Say, for example, that an SLA requires
development to address high severity
findings within 30 days. Yet, there is a
finding in a third-party component with no
patch available. Governance can provide
an exception process to analyze the risk
and allow the developer to continue their
work. The exception tracks the issue until
there is a patch.

THE CHALLENGE—Waiting for the
culture change to produce secure code.

THE PLAY—SAMM has an ingredient
for establishing baseline coding steps,
using an Implementation Review. The
Review assesses an organization’s
source code to aid vulnerability
discovery and related mitigation
activities and establish a baseline
for secure coding expectations.17

The business can see results as soon as
security injects baseline coding steps
and requirements into the SDLC. Early
skills such as configuring sensitive
cookies and properly coding new input
fields bear fruit. Then, security can layer
on additional requirements over time to
realize more progress.

COMPETITIVE DIGITAL COMPANIES UNDERSTAND THE
CRITICALITY OF SECURE CODING. THEY MAINTAIN EFFORTS
TO TRAIN EMPLOYEES IN CYBERSECURITY. THEY CHALLENGE
THEM TO LOOK DEEPLY INTO CYBERSECURITY AND ELEVATE
THEIR STANDARDS. 19

CONSIDER ADDING FIVE PRACTICES TO
SECURE CODING CHECKLISTS:

1.	Minify and obfuscate code to make it harder
to access and read

2. 	Avoid shortcuts such as leaving hard-coded
credentials and security tokens as comments

3. 	Automate scanning and code reviews

4. 	Avoid components with known vulnerabi l i t ies

5. 	Audit and log to detect incidents when you
deploy code to production. 21

THE CHALLENGE—Thirty-five percent of organizations say that less than half of their development
teams participate in formal security training.20 How does security get all this data out to developers
when emails and new information constantly bombard them?

THE PLAY—Establish an AppSec one-stop-shop.

A one-stop shop is an excellent self-service resource for busy developers. It offers consistency and
ease of access to information to make secure coding simpler. Everything on security for development
and anyone involved with the SDLC sits at one convenient link. Security can link to related policies and
standards and keep links to outside information and announcements in reverse chronological order.

If security is finding common bugs across software, develop resources on coding against them and put
those in the one-stop-shop. If the organization offers lunch-and-learns with guest speakers, publish
notices in the one-stop-shop. Follow up by publishing the results of these presentations with any
recordings from the event. Security can standardize secure coding checklists from across the various
teams and put them in the one-stop-shop.

Publish a link to the one-stop-shop in every email that crosses the development group and stakeholders.

7

8

SIXTY-FIVE-PERCENT OF APPLICATIONS
TESTED HAVE AT LEAST ONE VULNERABILITY
FROM THE OWASP TOP 10 VULNERABILITIES
LIST. ANOTHER 59% HAVE AT LEAST ONE
VULNERABILITY FROM THE SANS 25 LIST. 22

SAAS VENDORS MUST ADVANCE THEIR
SOFTWARE SECURITY CAPABILITIES.
THEY MUST BAKE SECURITY INTO THE
DEVELOPMENT PIPELINE. THESE EFFORTS
MUST INCLUDE TEACHING EACH DEVELOPER
TO CODE SOFTWARE SECURELY. 25

Security can create a one-stop-shop on a wiki, SharePoint site, or Confluence page, for example.
It can include OWASP articles on how to fix common vulnerabilities.

“Secure code reviews use automated tools, checklists, threat modeling, software development
experience, and security experience to identify security vulnerabilities. Integrate secure code
reviews as part of the Software Development Life Cycle (SDLC).”23 Developers can use the secure
coding checklists at the one-stop-shop in code reviews of junior developers’ work. But security must
socialize and promote it in the one-stop-shop, so developers use it. Developers must get information
from a one-stop-shop internally rather than by searching the web where they may get misinformation.

THE CHALLENGE—Security personnel are outnumbered far and away by developers.

The data demonstrates a valley between available security personnel and the glut of software
developers. Seventy-percent of ISSA (Information Systems Security Association) members believe
their organization has been impacted by the global cybersecurity skills shortage.24 At the same
time, the world can expect to see some 27.7 million software developers globally and climbing by
2023, according to Evans Data Corporation.

THE PLAY—Extend AppSec resources as
far out into the organization as possible.

Create an AppSec Advisory Board or
Security Champions Program. Get someone
from development from each siloed team
to join the board or program and appear
for one hour a month. Developers should
be amenable since the Advisory Board
gives them a say in application security approaches that affect how they work. Keep the meetings
actionable with SAMM initiatives that security and development can use. These people take what
they learn back to their groups, so security staff doesn’t overextend themselves. It’s a practical
and repeatable effort. “Only 15% of our survey respondents implement Security champions
programs.”26 Organizations that fall into the remaining 85% are missing an opportunity to inject
AppSec into their SDLs.

9

SOFTWARE INEVITABLY HAS FL AWS, SO UNTIL NOW, WE’VE FOCUSED ON
UNDERSTANDING WHAT IT MEANS WHEN WE SAY THAT APPLICATIONS HAVE

FL AWS. HOWEVER, ACCEPTING THERE ARE FL AWS DOES NOT MEAN THERE IS
NOTHING WE CAN DO. INDEED, MANY COMPANIES MAKE IT THEIR BUSINESS

TO HELP DEVELOPERS WRITE INCREASINGLY SECURE CODE. 27

THE CHALLENGE—Building an AppSec program is challenging.

THE PLAY—Get involved with local OWASP (Open Web Application
Security Project), ISSA, or ISACA chapters to meet and talk with
peers from other AppSec programs. Through peer support and
comparing notes, security teams can increase their confidence,
knowledgebase, and resources in maturing their AppSec programs.

To reach secure coding nirvana, strive to achieve the benefits
in a happy coder checklist:28

Stimulate cultural change to mature the software development group. Provide the best in breed
development tools that address secure coding. Train developers so they know how to meet secure
coding expectations.

Then…bask in the happiness of secure coding.

1	 2021 Software Security Predictions: Our Experts Weigh In,
Checkmarx, 2020

2	 ESG Master Survey Results: Modern Application Development Security,
Enterprise Strategy Group, 2020

3	 New Vulnerability Found: Executive Overconfidence, NetSparker
4	 The State of Application Security in the Ensterprise, Micro Focus
5	 Secure Coding Standards Overview, Perforce, 2020
6	 The State of Application Security in the Enterprise, Micro Focus
7	 5 Irrefutable Reasons to Prioritize Software Security, Checkmarx, 2020
8	 Software Assurance Maturity Model, Version 1.5, OWASP
9	 The Dark Reality of Open Source Spotlight Report, RiskSense
10	New Vulnerability Found: Executive Overconfidence, NetSparker
11	Secure Coding Practices Every Developer Should Know, snyk, 2020
12	Software Assurance Maturity Model, Version 1.5, OWASP
13	State of Software Security, Volume 11, Veracode, 2020
14	New Vulnerability Found: Executive Overconfidence, NetSparker

15	The State of Open Source Security Vulnerabilities, WhiteSource, 2021
16	5 Irrefutable Reasons to Prioritize Software Security, Checkmarx
17	Software Assurance Maturity Model, Version 1.5, OWASP
18	State of Software Security, Volume 11, Veracode, 2020
19	Cybersecurity in a digital era, McKinsey & Company, 2020
20	ESG Master Survey Results: Modern Application Development Security,

Enterprise Strategy Group, 2020
21	Secure Coding Practices Every Developer Should Know, snyk, 2020
22	State of Software Security, Volume 11, Veracode, 2020
23	9 Secure Code Review Best Practices For Your Web Application, Cypress

Data Defense, 2020
24	The Life and Times of Cybersecurity Professionals 2020, Enterprise

Strategy Group, 2020
25	Cybersecurity in a Digital Era, McKinsey & Company, 2020
26	The State of Open Source Security, snyk, 2020
27	State of Software Security, Volume 11, Veracode, 2020
28	2020 DevSecOps Community Survey, Sonatype, 2020

Happy developers
are 3.6x more likely
to pay attention to
security.

1 2 3 4
Happy developers have
the tools they need to
complete their job.

Happy developers spend
more time thinking about
security than grumpy
developers in less
mature organizations do.

Developers who
receive training on
how to code securely
are 5x more likely to
enjoy their work.

Keep Them Happy

10

2201 Cooperative Way, Suite 225, Herndon, VA 20171
guidepointsecurity.com • info@guidepointsecurity.com • (877) 889-0132

